Solar Hydrogen Integration Meeting

November 11, 2004

Office of Hydrogen, Fuel Cells and Infrastructure Technologies

Pete Devlin

Technology Validation (\$18.0M)

Total FY-05 Request: \$172.8M

Research & develop low-cost, efficient H₂ production technologies from diverse, domestic sources.

By 2010 Complete Research to Achieve:

- 1.50/kg hydrogen (delivered, untaxed) for distributed production from natural gas and/or liquid fuels
- \$2.85/kg with distributed grid-connected electrolysis, delivered

By 2015 Complete Research to Achieve:

- \$2.50/kg hydrogen (delivered, untaxed) for distributed production from biomass-derived renewable liquids
- \$2.75/kg with centralized electrolysis, delivered, from renewable electricity
- \$1.60/kg hydrogen at the plant gate from biomass gasification/pyrolysis

Distributed Reforming Production Targets

- Very large domestic solar resource
- Electrolysis hydrogen production requires low carbon electricity to reduce transportation carbon emissions
- Solar could provide distributed electricity resource to eliminate hydrogen delivery challenges
- Potential for integration of high temperature electrolysis
- Potential value for solar technologies in hydrogen transportation market
- Benefit for direct DC connection of pv and electrolysis

Solar Hydrogen Challenges

- Economic competitiveness with gasoline will require electricity at 2-5 cents per kWh from solar
- May require multi-MW electrolysis for hydrogen refueling stations
- Small scale distributed electrolysis matched with PV has very high capital costs

Renewable Hydrogen Production

Biomass Gasification/Pyrolysis

- Lower cost of delivered feedstock
- Advanced and integrated gasification/pyrolysis, reforming, shift, separations/purification technologies

Renewable Electrolysis

- Develop technologies for direct and grid connected integration
- Perform further analysis on electricity transmission and distribution scenarios for electrolysis

HT Thermochemical Cycles

 UNLV Consortium: Completing database and ranking of cycles and solar concentrators

Develop long-term renewable hydrogen technologies such as photoelectrochemical

Electrolysis Hydrogen Production Targets

^{*} Based on grid supplied electricity with a large percentage of renewable electricity at a refueling station

Key Challenges

- Reduce electricity cost of hydrogen production
- Increase scale to match larger refueling demands
- Develop systems that provide benefits to electric grid
- Integration with large supply of domestic renewable electricity sources

Technical Approach

- Lower capital costs through new system designs (\$700 kW to <\$300 kW)</p>
- New cell materials and systems for higher energy efficiency (60% to 75%)
- Develop high temperature electrolysis technologies to reduce electricity requirements

Total with Cost Share = \$102.5 Million (Federal Share = \$77.4 Million)

^{*} Hydrogen Technology: Production, Delivery, and Analysis

^{**} Hydrocarbon separation research co-funded with the Office of Fossil Energy

Major DOE Hydrogen Production Projects FY-05:

Distributed Reforming

- Air Products
- General Electric
- H2Gen
- BOC
- Praxair
- Virent Energy Systems

Separations and HT Thermochemical

- Praxair
- NETL
- SNL
- University of Colorado
- University of Nevada
- Media & ProcessTechnologies
- Pall Corporation
- University of Cincinnati

Electrolysis

- Giner
- Proton Energy
- Teledyne Energy
- General Electric
- Cerametec
- Arizona State University
- SRI International
- Stirling Energy Systems

Photolytic

- UC, Santa Barbara
- UC, Berkeley
- ORNL
- University of Hawaii

Biomass

- NREL
- PNNL
- Gas Technology Institute
- United Technologies

FreedomCAR and Fuel Partnership

ChevronTexaco

New Energy Company/DOE Technical Teams

- Production
- Delivery
- · Fuel Pathway Integration

New Joint Auto/Energy/DOE Technical Teams

- · Codes and Standards
- Storage

- How much solar electricity will be integrated with the electric grid in the future?
- Can distributed/home scale electrolysis be economically feasible?
- Can high temperature electrolysis be integrated with solar technology for higher efficiency and lower cost?
- Can solar achieve 2-5 cents per kWh electricity production cost?

